Norm of the Bernstein Left Quasi-interpolant Operator

Wu Zhengchang
Department of Mathernatics, Zhejiang University; Hangzhou, People's Republic of China
Communicated by Zeer Ditzian
Received March 1, 1990; revised August 1, 1990

Abstract

A Bernstein quasi-interpolant operator $B_{n}^{(k)}$ has been introduced by Sablonniere (in "Multivariate Approximation Theory, Vol. IV" (C. K. Chui. W. Schempp. and K. Zeller, Eds.). Birkhauser, Basel, 1989). In this paper we show that for fixed k the norm $\left\|B_{n}^{(k)}\right\|_{x}$ is uniformly bounded in n. This answers a conjecture of Sablonniere. © 1991 Academic Press. Inc.

1. Introduction

Let f be a function defined on $[0,1]$. The Bernstein operator B_{n} is defined by

$$
B_{n} f=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) p_{n i}(x),
$$

where $p_{n i}=\binom{n}{i} x^{i}(1-x)^{n-i}, 0 \leqslant i \leqslant n$. It is well known the approximation order of B_{n} is $O(1 / n)$. To obtain faster convergence various Bernstein-type quasi-interpolants have been introduced. Recently P. Sablonniere introduced such an operator [4]. To illustrate the operator we recall some notations (see [4]).

Let \mathbb{P}_{n} denote the space of polynomials of degree at most n. On the space P_{n} the operator B_{n} can be considered as a linear differential operator $[3,4]$

$$
\begin{equation*}
B_{n}=\sum_{i=0}^{n} \beta_{i}^{n} D^{i}, \tag{1}
\end{equation*}
$$

where $\beta_{i}^{n} \in \mathbb{P}_{i}$ are defined by the recurrence relation

$$
\begin{aligned}
n(i+1) \beta_{i+1}^{n}(x) & =X\left(D \beta_{i}^{n}(x)+\beta_{i-1}^{n}(x)\right), \\
\beta_{0}^{n} & =1, \quad \beta_{1}^{n}=0,
\end{aligned}
$$

where (and in the following) $X=x(1-x)$.

Because B_{n} is a one-to-one mapping on \mathbb{P}_{n} there exists the inverse operator B_{n}^{-1} defined on \mathbb{P}_{n} which can also be considered as a linear differential operator

$$
B_{n}^{-1}=\sum_{j=0}^{n} \alpha_{j}^{n} D^{j}
$$

where the coefficients x_{j}^{n} are defined by the recurrence relation

$$
\begin{gather*}
\sum_{r=0}^{s} \delta_{s r}^{n} x_{r}^{n}=0, \tag{2}\\
x_{0}^{n}=1, \quad x_{1}^{n}=0,
\end{gather*}
$$

where $\delta_{s r}^{n}=\sum_{i=0}^{r}\binom{r}{i} D^{i} \beta_{i+s-r}^{n}$.
For $0 \leqslant k \leqslant n$, [4] introduced the truncated inverse of B_{n}

$$
A_{n}^{(k)}=\sum_{j=0}^{k} \alpha_{j}^{n} D^{j}
$$

and defined the so-called left Bernstein quasi-interpolant $B_{n}^{(k)}$ (of order k)

$$
B_{n}^{(k)}=A_{n}^{(k)} B_{n}
$$

That is,

$$
\begin{aligned}
B_{n}^{(k)} & =A_{n}^{(k)} B_{n} \\
& =\sum_{j=0}^{k} \alpha_{j}^{n} D^{j} B_{n} .
\end{aligned}
$$

In order to investigate the convergence of the left Bernstein quasi-interpolant in $C[0,1]$, we want to know whether the norm of the operator $B_{n}^{(k)}$ is bounded for k fixed. Here we consider $C[0,1]$ as a Banach space $\left(C[0,1],|\cdot|_{x}\right)$ with the norm $|f|_{i_{x}}=\sup _{0 \leqslant x \leqslant i}|f(x)|$ for $f(x) \in C[0,1]$ and $B_{n}^{(k)}$ as a linear operator $B_{n}^{(k)}:\left(C[0,1],\|\cdot\|_{x}\right) \rightarrow\left(C[0,1], \|_{x}\right)$. For $k=0, k=1$, we have

$$
B_{n}^{(0)}=B_{n}^{(1)}=B_{n} .
$$

Hence

$$
\left\|B_{n}^{(k)}\right\|_{x} \leqslant 1, \quad k=0,1 .
$$

For $k=2$,

$$
\left\|B_{n}^{(2)}\right\|_{\infty} \leqslant 3
$$

is proved in [4]. As to what happens for $k \geqslant 3$, P . Sablonniere has the following conjecture [4]: for fixed k, the norm $\|\left. B_{n}^{(k)}\right|_{\infty}$ is uniformly (about n) bounded. Then based on the conjecture he has proved a convergence result of $B_{n}^{(k)}$. And it is said that the experimental results support the conjecture. Thus it is crucial whether the conjecture is true or not. In this short note we will prove this conjecture.

2. Preliminaries

From the expression of B_{n}, it is easy to derive

$$
\begin{equation*}
\beta_{i}^{n}(x)=\frac{1}{i!} B_{n}\left((\cdot-x)^{i}\right)(x) . \tag{3}
\end{equation*}
$$

The properties of $B_{n}\left((\cdot-x)^{i}\right)(x)$ have been extensively investigated in papers involving Bernstein polynomials (for example, $[1,2,5]$). We recall the recurrence relation of $B_{n}\left((\cdot-x)^{i}\right)(x) \equiv T_{n, i}(x)$:

$$
\begin{aligned}
T_{n, 0}(x) & =1 \\
T_{n .1}(x) & =0 \\
T_{n, i+1}(x) & =\frac{X}{n}\left(T_{n, i}^{\prime}(x)+i T_{n, i-1}(x)\right) .
\end{aligned}
$$

By induction it is easy to check that

$$
\begin{aligned}
T_{n, 2 m}(x) & =C_{0}^{(m)}(x) \frac{X^{m}}{n^{m}}+C_{1}^{(m)}(x) \frac{X^{m-1}}{n^{m+1}}+\cdots+C_{m-1}^{(m)}(x) \frac{X}{n^{2 m-1}}, \\
T_{n, 2 m+1}(x) & =D_{0}^{(m)}(x) \frac{X^{m}}{n^{m+1}}+D_{1}^{(m)}(x) \frac{X^{m-1}}{n^{m+2}}+\cdots+D_{m-1}^{(m)}(x) \frac{X}{n^{2 m}} .
\end{aligned}
$$

Set $s^{\prime}=[(s+1) / 2]$. We can write

$$
\begin{align*}
T_{n . s}(x)= & F_{s, s-s^{\prime}-1}(x) \frac{X}{n^{s-1}}+F_{s, s-s^{\prime}-2}(x) \frac{X^{2}}{n^{s-2}} \\
& +\cdots+F_{s .0}(x) \frac{X^{s-s^{\prime}}}{n^{s^{\prime}}} \tag{4}
\end{align*}
$$

where $F_{s, j}(x)$ are polynomials independent of n (just as are $C_{j}^{(s)}(x)$ and $D_{j}^{(s)}(x)$). Repeated differentiation of (4) shows that

$$
\begin{align*}
D^{j} T_{n, s}(x)= & F_{s, s-s^{\prime}-1}^{j}(x) \frac{X^{1-j}}{n^{s-1}}+F_{s, s-s^{\prime}-2}^{j}(x) \frac{X^{2-j}}{n^{s-2}} \\
& +\cdots+F_{s, 0}^{j}(x) \frac{X^{s-s^{\prime}-j}}{n^{s^{\prime}}} \tag{5}
\end{align*}
$$

where we make the convention $X^{x}=1$ for integer $x<0 . F_{s . i}^{\prime}(x)$ are polynomials bounded uniformly in n.

Lemma 1. $\delta_{s r}^{n}$ is defined in (2). Then for $r \leqslant s$ we have

$$
\begin{align*}
\delta_{s r}^{n}(x)= & G_{s-1}^{s r}(x) \frac{1}{n^{s-1}}+G_{s-2}^{s r}(x) \frac{1}{n^{s-2}}+\cdots+G_{s-r}^{s r}(x) \frac{1}{n^{s-1}} \\
& +G_{s-r-1}^{s r}(x) \frac{X}{n^{s-r-1}}+\cdots+G_{[(s-r+1) 2]}^{s r}(x) \frac{X^{s-r-[(s-r+1) 2]}}{n^{[(s-r+1) 2]}} \tag{6}
\end{align*}
$$

Note that

$$
\begin{aligned}
\delta_{s s-1}^{n}(x) & =G_{s-1}^{s s-1}(x) \frac{1}{n^{s-1}}+G_{s-2}^{s s-1}(x) \frac{1}{n^{s-2}}+\cdots+G_{1}^{s s-1}(x) \frac{1}{n} \\
\delta_{s 0}^{n}(x) & =\frac{1}{s!} T_{n, s}(x)
\end{aligned}
$$

Here $G_{j}^{s r}(x)$ are polynomials independent of n. In particular

$$
\delta_{s s}^{n}=s!\binom{n}{s} n^{-s} .
$$

Proof. By the definition

$$
\delta_{s r}^{n}=\sum_{i=0}^{r}\binom{r}{i} D^{i} \beta_{i+s-r}^{n}
$$

and using (3) and (5), the rearrangement of the terms X yields (6), For (6^{\prime}) see [4].

Lemma 2. We have $x_{0}^{n}=1, x_{1}^{n}=0$, and
$x_{s}^{n}=H_{s-1}^{n s}(x) \frac{X}{n^{s-1}}+H_{s-2}^{n s}(x) \frac{X^{2}}{n^{s-2}}+\cdots+H_{s^{\prime}}^{n t}(x) \frac{X^{s-s^{s}}}{n^{\varepsilon}}, \quad s \geqslant 2$,
where $s^{\prime}=[(s+1) / 2]$ and $H_{j}^{n s}(x)$ are functions uniformly bounded in n and $x \in[0,1]$.

Proof. By induction. For $s=2$ it is obvious by calculation. Now suppose (7) is true for $s \leqslant k-1$. By Lemma 1 we have

$$
\begin{aligned}
\delta_{k r}^{n}(x)= & G_{k-1}^{k r}(x) \frac{1}{n^{k-1}}+G_{k-2}^{k r}(x) \frac{1}{n^{k-2}}+\cdots+G_{k-r}^{k r}(x) \frac{1}{n^{k-r}} \\
& +G_{k-r-1}^{k r}(x) \frac{X}{n^{k-r-1}}+\cdots+G_{[1 k-r+1 \mid 2]}^{k r}(x) \frac{X^{k-r-[(k-r-1 ; 2]}}{n^{[(k-r+1), 2]}}
\end{aligned}
$$

$$
\begin{aligned}
= & \bar{G}_{k-r}^{k r}(x) \frac{1}{n^{k-r}}+G_{k-r-1}^{k r}(x) \frac{X}{n^{k-r-1}} \\
& +\cdots+G_{[(k-r+1) ; 2]}^{k r}(x) \frac{X^{k-r-[(k-r-1): 2]}}{n^{[(k-r+1), 2]}}
\end{aligned}
$$

Thus for $r \leqslant k-1$,

$$
\begin{aligned}
\delta_{k r}^{n} x_{r}^{n}= & \left(\bar{G}_{k-r}^{k r}(x) \frac{1}{n^{k-r}}+G_{k-r-1}^{k r}(x) \frac{X}{n^{k-r-1}}\right. \\
& \left.+\cdots+G_{[(k-r+1), 2]}^{k r}(x) \frac{X^{k-r-[(k-r+1) \cdot 2]}}{n^{[(k-r+1) ; 2]}}\right) \\
& \times\left(H_{r-1}^{n r}(x) \frac{X}{n^{r-1}}+H_{r-2}^{n r}(x) \frac{X^{2}}{n^{r-2}}+\cdots+H_{r^{\prime}}^{n r}(x) \frac{X^{r-r^{\prime}}}{n^{r^{\prime}}}\right)
\end{aligned}
$$

Note that

$$
\left[\frac{k-r+1}{2}\right]+\left[\frac{r+1}{2}\right] \geqslant\left[\frac{k+1}{2}\right]=k^{\prime} .
$$

Hence with the rearrangement we can write $\delta_{k r}^{n} \alpha_{r}^{n}$ as

$$
\delta_{k r}^{n} \alpha_{r}^{n}=L_{k-1}^{k r}(x) \frac{X}{n^{k-1}}+L_{k-2}^{k r}(x) \frac{X^{2}}{n^{k-2}}+\cdots+L_{k^{\prime}}^{k r}(x) \frac{X^{k-k^{\prime}}}{n^{k^{\prime}}}
$$

where obviously all $L_{j}^{k r}(x)$ are uniformly bounded in n and $x \in[0,1]$.
Noting that

$$
\delta_{k k}^{n}=k!\binom{n}{k} n^{-k}
$$

we have

$$
\begin{aligned}
\left(\delta_{k k}^{n}\right)^{-1} & =\frac{n^{k}}{k!\binom{n}{k}}=\frac{n^{k}}{n(n-1) \cdots(n-k+1)} \\
& =\left(1+\frac{1}{n-1}\right)\left(1+\frac{2}{n-2}\right) \cdots\left(1+\frac{k-1}{n-k+1}\right) \\
& =1+K_{n},
\end{aligned}
$$

where K_{n} is bounded in n. Using the recurrence relation about α_{k}^{n}, we have

$$
\delta_{k k}^{n} \alpha_{k}^{n}=-\sum_{r=0}^{k-1} \delta_{k r}^{n} x_{r}^{n}
$$

It follows that (7) is true for $s=k$.

3. Main Result

Now we are in a position to prove the main result about the norm of the left Bernstein quasi-interpolant.

Theorem. Let

$$
\begin{aligned}
B_{n}^{(k)} & =A_{n}^{(k)} B_{n} \\
& =\sum_{j=0}^{k} \chi_{j}^{n} D^{j} B_{n} .
\end{aligned}
$$

For fixed k, the norm $\left\|B_{n}^{(k)}\right\|_{\infty}$ is bounded. Namely, there is a constant M independent of n such that

$$
\left|B_{n}^{(k)}\right|_{\infty} \leqslant M .
$$

Proof.

$$
B_{n} f=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) p_{n i} .
$$

It is well known that

$$
\begin{align*}
D^{j} B_{n} f(x) & =\frac{n!}{(n-j)!} \sum_{i=0}^{n-1} \Delta_{1 n}^{j} f\left(\frac{i}{n}\right) p_{n-j i}(x) \tag{8}\\
\Delta_{1 n} & =f\left(x+\frac{1}{n}\right)-f(x) .
\end{align*}
$$

It has been proved that

$$
\begin{equation*}
X^{r}\left|D^{2 r} B f(x)\right| \leqslant C(r) n^{r} \mid f \|_{x}, \quad x \in[0,1], \tag{9}
\end{equation*}
$$

where C is a constant independent of n [2]. For integer j we write it as

$$
j=s+2 r,
$$

where s and r are integers, $0 \leqslant r \leqslant[j ; 2]$. Thus

$$
D^{j} B_{n} f(x)=D^{2 r}\left(D^{s} B_{n} f(x)\right)=D^{2 r}\left(\frac{n!}{(n-s)!} \sum_{t=0}^{n-s} A_{1 n}^{s} f\left(\frac{i}{n}\right) p_{n-s i i}(x)\right) .
$$

From (9) it follows that

$$
\begin{align*}
X^{r}\left|D^{j} B_{n} f(x)\right| & \leqslant C(j) \frac{n!}{(n-s)!}(n-s)^{r} \quad \Delta_{1 n}^{s} f(\cdot) \|_{x} \\
& \leqslant C_{1}(j) n^{s+r} ; f_{x} . \tag{10}
\end{align*} \quad x \in[0,1] .
$$

Now using Lemma 2, we obtain

$$
\left|\alpha_{j}^{n} D^{j} B_{n} f(x)\right| \leqslant K\left(\frac{X}{n^{j-1}}+\cdots+\frac{X^{j-[(j+1), 2]}}{n^{[(j+1) ; 2]}}\right)\left|D^{j} B_{n} f(x)\right|
$$

where the constant $K \geqslant \max _{j^{\prime} \leqslant s \leqslant j-1}\left\|H_{s}^{n j}(\cdot)\right\|_{\infty}$, independent of n. Noting that

$$
j-\left[\frac{j+1}{2}\right] \leqslant\left[\frac{j}{2}\right],
$$

and $j=s+2 r$, from (10) we have

$$
\begin{aligned}
\frac{X^{r}}{n^{j-r}}\left|D^{j} B_{n} f(x)\right| & \leqslant \frac{1}{n^{j-r}} C_{1}(j) n^{s+r}\|f\|_{\infty} \\
& \leqslant\left. C_{1}(j)!f\right|_{\infty}, \quad x \in[0,1] .
\end{aligned}
$$

Thus

$$
\left|\alpha_{j}^{n} D^{j} B_{n} f(x)\right| \leqslant C_{2}(j)\|f\|_{x}, \quad x \in[0,1]
$$

For fixed k we have

$$
\begin{aligned}
\left|B_{n}^{(k)} f(x)\right| & \leqslant \sum_{j=0}^{k}\left|\alpha_{j}^{n} D^{j} B_{n} f(x)\right| \\
& \leqslant\left(\sum_{j=0}^{k} C_{2}(j)\right)\|f\|_{\infty}, \quad x \in[0,1] .
\end{aligned}
$$

Let $M=\left(\sum_{j=0}^{k} C_{2}(j)\right.$. Then we obtain the desired result:

$$
\left\|B_{n}^{(k)}\right\|_{x} \leqslant M
$$

Acknowledgment

This work was done when the author visited Siegen University of Germany. The author thanks Professor Walter Schempp for his helpful comments.

References

1. P. L. Butzer, Linear combinations of Bernstein polynomials. Canad. J. Math. 5 (1953), 559-567.
2. Z. Ditzian. A global inverse theorem for combinations of Bernstein polynomiais. J. Approx. Theory 26 (1979). 277-292.
3. G. G. Lorentz, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
4. P. Sablonniere, Bernstein quasi-interpolants on [0.1], in "Multivariate Approximation Theory. Vol. IV" (C. K. Chui, W. Schempp, and K. Zeller, Ed.), pp. 287-294. Birkhä̈user, Basel. 1989.
5. We Zhengchang, Linear combinations of Bernstein operators on a simplex, to appear.
